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Abstract: This paper introduces a simple framework of counterfactual estimation for causal inference with time-series
cross-sectional data, in which we estimate the average treatment effect on the treated by directly imputing counterfactual
outcomes for treated observations. We discuss several novel estimators under this framework, including the fixed effects
counterfactual estimator, interactive fixed effects counterfactual estimator and matrix completion estimator. They provide
more reliable causal estimates than conventional two-way fixed effects models when treatment effects are heterogeneous or
unobserved time-varying confounders exist. Moreover, we propose a new dynamic treatment effects plot, along with several
diagnostic tests, to help researchers gauge the validity of the identifying assumptions. We illustrate these methods with two
political economy examples and develop an open-source package, fect, in both R and Stata to facilitate implementation.

Verification Materials: The data and materials required to verify the computational reproducibility of the results, proce-
dures and analyses in this article are available on the American Journal of Political Science Dataverse within the Harvard
Dataverse Network, at: https://doi.org/10.7910/DVN/ZVC9W5.

The linear two-way fixed effects (TWFE) model
is one of the most commonly used statistical
routines in the social sciences to establish causal

relationships using observational time-series cross-
sectional (TSCS) data, or long panel data. Such models
are a popular choice because they can potentially control
for a large set of unobserved unit- and time-invariant
confounders. However, recent research points to several
important drawbacks of fixed effects (FE) models (Black-
well and Glynn 2018; Imai and Kim 2019). First, the strict
exogeneity assumption they rely on is often unrealistic
– it not only requires the absence of time-varying con-
founders, but also rules out the possibility that past out-
comes directly affect current treatment assignment (no
feedback). It is well known that violations of strict exo-

geneity lead to biases in the causal estimates, yet methods
for relaxing it or diagnosing its failure remain limited.

Second, TWFE models involve rigid functional form
assumptions. When the treatments are dichotomous,
TWFE models often assume their effects to be constant
(constant treatment effect) and they affect the contem-
poraneous outcome only, not future outcomes (no
carryover effects). Violation of the former will likely
result in biased estimates even when strict exogeneity
is satisfied, a problem receiving much attention in the
literature recently. For example, de Chaisemartin and
d’Haultfoeuille (2020) show that TWFE estimates are
weighted averages of individualistic treatment effects, or
treatment effects on each cell under the treatment condi-
tion. Because the weights can sometimes be negative due
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to differential treatment timing and heterogeneous treat-
ment effects, TWFE estimates may not even be convex
combinations of the individualistic effects. In a staggered
adoption setting where a treatment never switches back
once it is on, Goodman-Bacon (2021) shows that nega-
tive weights are caused by temporal changes in the treat-
ment effects of early treatment adaptors. Several papers
aim to address this issue. For example, Strezhnev (2018)
and Callaway and Sant’Anna (2021) suggest that under
staggered adoption, researchers can instead estimate the
average treatment effects for units that adopt the treat-
ment at the same time, which they call the cohort average
treatment effect; de Chaisemartin and d’Haultfoeuille
(2020) propose to use observations only one period be-
fore or after the treatment’s onset or exit, which leads to
an estimator they call DIDM (M for ‘multiple’). However,
these approaches either have limited applicability by re-
quiring a staggered adoption design or are statistically in-
efficient due to dropping many observations. Researchers
so far have paid little attention to the no carryover effects
assumption, though it is often testable by data.

In this paper, we introduce a simple framework that
ameliorates these problems. We focus on TSCS data with
dichotomous treatments, but they are allowed to switch
back and forth (we call it a general panel treatment struc-
ture). Estimators under this framework take observations
under the treatment condition as missing, use data un-
der the control condition to build models and impute
counterfactuals of treated observations based on the es-
timated models. We call them counterfactual estimators.
This framework has several benefits. First, by not using
the treated observations at the modelling stage and by
imposing uniform weights on individualistic treatment
effects on treated observations, it avoids the aforemen-
tioned negative weights problem and corrects biases
induced by treatment effect heterogeneity. Second, it
accommodates a variety of models, some of which can
potentially relax the conventional strict exogeneity as-
sumption. Third, it makes diagnostics and visualization
much easier than with traditional TWFE models.

We discuss three methods under this framework, in-
cluding (1) the fixed effects counterfactual (FEct) esti-
mator, of which difference-in-differences (DID) is a spe-
cial case; (2) the interactive fixed effects counterfactual
(IFEct) estimator; and (3) the matrix completion (MC)
estimator. Both IFEct and MC have recently emerged in
the literature – see, for example, Gobillon and Magnac
(2016) and Xu (2017) for the former and Kidziński and
Hastie (2018) and Athey et al. (2021) for the latter. They
are designed to construct a lower rank approximation of
the outcome data matrix using information of untreated
observations to account for potential time-varying

confounders but differ in their ways of regularizing la-
tent factors. Although FEct can be seen as a special case of
IFEct, it is uniquely important because it provides a sim-
ple solution to the aforementioned weighting problem
with the TWFE estimator. In addition to us, Borusyak,
Jaravel, and Spiess (2021) and Gardner (2021) have in-
dependently proposed it as an improvement over TWFE.
They call it the efficient estimator – because it is shown
to be the most efficient among a class of linear unbiased
estimators for the ATT – and the two-stage DID estima-
tor, respectively.

Moreover, this paper aims to provide researchers
with a set of diagnostic tools when making causal
claims using TSCS data. A popular practice among
researchers to evaluate the validity of the identifying
assumptions is to draw a plot of the so-called ‘dynamic
treatment effects’, which are coefficients of a series of
interactions between a dummy variable indicating the
treatment group – units that are exposed to the treat-
ment for at least one period during the observed time
window – and a set of time dummies indicating the
time period relative to the onset of the treatment using
a TWFE model. If these coefficients exhibit a monotonic
trend leading toward the onset of the treatment, or a
‘pretrend’, the assumptions are deemed problematic.
However, this method relies on parametric assumptions
and the statistical tests derived from it are informal, often
underpowered or even misleading (Roth 2020; Sun and
Abraham 2021). Taking advantage of the counterfactual
estimation framework, we improve the practice of esti-
mating and plotting the dynamic treatment effects, or
the average treatment effects on the treated (ATT) over
different periods, without assuming treatment effect
homogeneity of any kind.

In addition to visual inspections, we propose a set
of statistical tests to help researchers evaluate the va-
lidity of the identifying assumptions. The core of these
tests is based on a panel placebo test, in which we hide a
few periods of observations right before the onset of the
treatment for the treated units and use a model trained
using the rest of the untreated observations to predict
the untreated outcomes of those held-out periods. If the
identifying assumptions are valid, the average differences
between the observed and predicted outcomes in those
periods should be close to zero. If, on the contrary, these
differences are significantly different from zero, we ob-
tain a piece of evidence that either the functional form
assumption or strict exogeneity is likely invalid.

We then use this basic idea to construct two ad-
ditional tests, a test for no pretrend and a test for no
carryover effects. With the former, instead of hiding a
few periods right before the treatment begins, we use
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162 LICHENG LIU, YE WANG, AND YIQING XU

a leave-one-period-out approach to consecutively hide
one pretreatment period (relative to the timing of the
treatment) and repeatedly conduct a placebo test on ob-
servations in that period. By doing so, we have a more
holistic view of whether the identifying assumptions will
likely hold. The test for no carryover effects, on the other
hand, is the mirror opposite of the placebo test in that
it hides a few periods right after the treatment ends. If
carryover effects do not exist, the average differences be-
tween the observed and predicted outcomes in those pe-
riods should be close to zero. This test is infeasible for
the staggered adoption treatment structure, in which the
treatment never switches back. However, under staggered
adoption, potential carryover effects may not be concerns
for researchers who care about the overall cumulative ef-
fects of the treatment over an extended period of time.

For all three tests, we use both a conventional
difference-in-means (DIM) approach, which tests
against the null of no difference, and an equivalence
approach, which flips the null and tests against a pre-
specified difference. Consistent with the literature on
equivalence tests in cross-sectional settings (Hartman
and Hidalgo 2018; Hartman 2021), we show that the
equivalence approach has advantages over the DIM ap-
proach when limited power is a concern. This is because
as researchers collect more data, under valid identifying
assumptions, it should be easier for them to declare
equivalence by rejecting null in an equivalence test, not
harder. Bilinski and Hatfield (2018), Dette and Schu-
mann (2020) and Egami and Yamauchi (2021) propose
similar tests recently in a DID setting. We recommend
researchers consider the equivalence approach when data
are limited.

This paper makes two main contributions to the
literature. First, it introduces a counterfactual estimation
framework to TSCS analysis that covers a variety of novel
estimators. This new imputation approach addresses the
weighting issue of TWFE models that causes concern for
many researchers, and the new estimators introduced
here can potentially control for decomposable time-
varying confounders in a general panel data setting. Our
second contribution is to develop a set of visualization
and diagnostic tools to assist researchers in gauging the
validity of the identifying assumptions and choosing the
most suitable model for their applications.

This paper builds on earlier work on counterfac-
tual estimation (or imputation methods) for causal
inference. Heckman, Ichimura, and Todd (1997, 1998)
first noted that, to identify the ATT, one only needs to
impute counterfactuals for observations in the treatment
group. This perspective has motivated a series of studies
that try to predict the counterfactual in cross-sectional

studies using various methods, such as regression
(Lin 2013), the Oaxaca-Blinder estimator (Kline 2011)
and machine learning algorithms (Künzel et al. 2019).
The synthetic control method (SCM) first adopts the
counterfactual approach in a panel setting (Abadie,
Diamond, and Hainmueller 2010), but it is limited
to comparative case studies, a specialized user case.
We introduce it to systematically analysing panel/
TSCS data.

We also contribute to an emerging literature on
causal inference with panel/TSCS data and our approach
has advantages over existing methods under various cir-
cumstances. Compared with existing factor-augmented
methods (e.g. Gobillon and Magnac 2016; Xu 2017),
which also use imputation methods, our framework
can accommodate more complex TSCS designs, such
as treatment reversal. Compared with TSCS methods
based on matching and reweighting (e.g. Abadie 2005;
Callaway and Sant’Anna 2021; de Chaisemartin and
d’Haultfoeuille 2020; Imai and Kim 2019; Strezhnev
2018), our approach can accommodate more complex
data structure and incorporate covariates more conve-
niently, and is often more efficient. It can also serve as
a building block for doubly robust estimators, such as
the augmented SCM (Ben-Michael, Feller, and Rothstein
2021).

This approach, of course, has limitations. First,
the strict exogeneity assumption, which corresponds to
baseline randomization, may be unrealistic in many ap-
plied settings, in which case researchers should consider
methods based on sequential ignorability (Blackwell and
Glynn 2018; Hazlett and Xu 2018; Imai, Kim, and Wang
2021). See Xu (2022) for a detailed discussion on the two
identification regimes. With a general panel treatment
structure, our method only allows limited carryover
effects. Second, although we provide flexible modelling
options, such as IFEct and MC, they are no panacea for
all TSCS applications. The factor-augmented approach
is more likely to suffer from biases due to model depen-
dency and misspecification. Researchers have recently
made efforts to alleviate this concern by proposing
doubly robust estimators (e.g. Arkhangelsky et al. 2019;
Ben-Michael, Feller, and Rothstein 2021); this paper
does not incorporate these innovations because doing
so would limit the applicability of our methods (e.g. by
not allowing treatment reversal). Last but not least, the
equivalence test approach requires users to specify an
equivalence range, which may leave room for post hoc
justification. Despite these drawbacks, we believe that
the counterfactual imputation approach is a promising
framework for TSCS analysis and can be extended to
support a wide range of models.
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COUNTERFACTUAL ESTIMATORS 163

Counterfactual Estimators

We first introduce the framework and the overall
estimation strategy, and then discuss three novel estima-
tors as examples.

A Simple Framework

Setup. Though our approach can accommodate both
balanced and imbalanced panels, we consider a balanced
panel with N units and T periods for notational conve-
nience. Denote Dit the treatment status. Denote Yit (1)
and Yit (0) the potential outcomes of unit i in period t
when Dit = 1 and Dit = 0, respectively. Denote Xit a
vector of the exogenous covariates, Uit the unobservable
attributes and εit the idiosyncratic error term. Without
loss of generality, we can define δit = Yit (1) − Yit (0)
for unit i in period t . We assume the following
class of outcome models for the untreated potential
outcome:

Assumption 1 (Functional form). Yit (0) = f (Xit ) +
h(Uit ) + εit , in which f (·) and h(·) are known, paramet-
ric functions.

Note that Assumption 1 requires additive separabil-
ity of the four right-hand side terms. This class of models
is scale dependent (Athey and Imbens 2006), e.g. trans-
forming the outcome from levels to logarithms may ren-
der the identification assumptions discussed below in-
valid. It is easy to see that the classic two-group two-
period DID approach assumes a model that is a special
case in Assumption 1:

Yit (0) = Uit + εit = αi + ξt + εit , t = 1, 2,

in which αi and ξt are unit and period FE. Hence, TWFE
models’ ability to control for unobserved confounders
rests on the functional form assumption.

The setup, together with Assumption 1, rules out
both temporal and spatial interference (Wang 2021),
including potential anticipation effects and carryover ef-
fects. Borusyak, Jaravel, and Spiess (2021) show that the
presence of anticipation effects will cause underidentifi-
cation of the causal effects; the same logic applies to car-
ryover effects. In a staggered adoption design, however,
carryover effects are allowed because we can interpret δit

as a combination of instant effect of the current treat-
ment and cumulative carryover effects of past treatments
on a treated unit relative to its potential outcome history
under the never-treated condition – see Figure A3 on

p. 6 in Supporting Information (SI) for a graphic
illustration.

Estimands. The primary causal quantity of interest is
the average treatment effect on the treated units, whose
treatment status has changed at least once during the ob-
served time window, that is,

ATT = E[δit |Dit = 1,Ci = 1]

in which δit = Yit (1) − Yit (0) by definition; and Ci = 1 if
∃t , t ′ s.t. Dit = 0, Dit ′ = 1; otherwise, Ci = 0. For units
that have never been exposed to the treatment condition,
it is difficult to compute their treated potential outcomes
without strong structural assumptions. Similarly, it is dif-
ficult to estimate causal effects on units that are always
treated, and we drop them from the sample at the pre-
processing stage.

In empirical work, researchers may be also inter-
ested in the average treatment effect on the treated at
sth (s > 0) periods since the treatment’s onset:

ATTs = E[δit |Di,t−s = 0,

Di,t−s+1 = Di,t−s+2 = · · · = Dit = 1︸ ︷︷ ︸
s periods

,

Ci = 1], s > 0.

For the purpose of the diagnostic tests we will intro-
duce later, we define ATTs = 0, ∀s ≤ 0. An alternative
estimand used by de Chaisemartin and d’Haultfoeuille
(2020) is the average instant treatment effect of changes
in the treatment, that is,

AITC = E[δit |(Di,t−1 = 0, Di,t = 1) or

(Di,t = 1, Di,t+1 = 0)].

It has the benefit of relaxing the no-carryover-effect as-
sumption, but it is less applicable in many empirical ap-
plications because the effect of a treatment often takes
time to manifest itself. For that reason, it is not the main
focus of this paper. Our software package fect provides
support for all the above estimands.

Assumption 2 (Strict exogeneity). εit ⊥⊥ {D js, X js, U js},
for all i, j ∈ {1, 2, . . . , N} and s, t ∈ {1, 2, . . . , T }.

Together with Assumption 1, Assumption 2 corre-
sponds to baseline quasi-randomization conditional on
X and U, that is, Yis(0) ⊥⊥ Dit |Xi,1...T , Ui,1...T , ∀i, s, t , in
which Xi,1...T and Ui,1...T are the time series of Xit and
Uit , respectively. When h(Uit ) = αi + ξt (as in DID),
Assumption 2 implies the parallel trends assumption,
that is,
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164 LICHENG LIU, YE WANG, AND YIQING XU

E[Yit (0)|Xit ] − E[Yis(0)|Xis] = E[Yjt (0)|X jt ] −
E[Yjs(0)|X js], ∀i, j, ∀t , s,

which states that, by expectation, the untreated potential
outcome of all units follow parallel paths. When Uit is of
a more general form, Assumption 2 implies

E[Yit (0)|Xit , Uit ] − E[Yis(0)|Xis, Uis] = E[Yjt (0)

|X jt , U jt ] − E[Yjs(0)|X js, U js], ∀i, j, ∀t , s,

which states that conditional on the observed exogenous
covariates and unobserved attributes (if we can extract
them), the average changes in untreated potential out-
come from period s to period t is the same between unit
i and unit j. This leads to the third assumption.

Assumption 3 (Low-dimensional decomposition).
There exists a low-dimensional decomposition of
h(Uit ) : h(Uit ) = Lit , and rank(LN×T ) � min{N, T }.
For example, L = �F, in which � is an (N × r) matrix of
factor loadings and F is an (r × T ) matrix of factors and
r � min{N, T }.

Assumption 3 allows us to condition on Uit . To give
a concrete example, if Uit = ft · λi is one dimensional,
we can understand it as the impact of a common time
trend ft having a heterogeneous impact on each unit,
whose heterogeneity is captured by λi. Moreover, when
ft is constant, Uit reduces to a set of unit FE; when λi

is constant, it reduces to time FE. Hence, additive FE in
DID models obviously satisfy this assumption. When un-
observed confounders Uit exist, treatment assignment is
dependent on observed untreated outcomes, thus, we are
operating under a special case of missing not at random
(Rubin 1976). Assumption 3 allows us to break this de-
pendency by controlling for Uit approximated using data
and can be understood as a feasibility assumption.

In Figure 1, we illustrate what the identifying as-
sumptions entail using a directed acyclic graph (DAG). It
shows that Assumptions 1 and 2 rule out anticipation ef-
fects or carryover effects (e.g. no arrows from Dt to Yt−1

or Yt+1), feedback (e.g. no arrow from Yt−1 to Dt ) and
lagged dependent variables (no arrow from Yt−1 to Yt ); it
also shows that the treatment effects of Dit on Yit are sep-
arable from the influences of Uit and Xit . This setup nests
many existing models for TSCS data analyses, including
TWFE and IFE models, although these models usually
assume constant treatment effect, that is, δit = δ. If these
assumptions are unsatisfied, research may turn to meth-
ods under sequential ignorability. See more discussion in
Blackwell and Glynn (2018) and Imai and Kim (2019) on
the potential tradeoffs.

FIGURE 1 A DAG Illustration

Notes: The figure presents a DAG (directed acyclic graph) con-
sistent with Assumptions 1–3. Unit indices are dropped for sim-
plicity. Y, D, X, ε represent the outcome, treatment, covariates
and error term, respectively.

Estimation strategy. We define the observations under
control and treatment conditions asO = {(i, t )|Dit = 0}
and M = {(i, t )|i ∈ T , Dit = 1}, respectively, in which
O stands for ‘observed’ and M stands for ‘missing’. Al-
though the outcome model researchers choose to employ
may vary, estimation proceeds in a similar fashion with
the following steps:

Step 1. On the subset of untreated observations
(O), fit a model of the response surface Yit , ob-
taining f̂ and ĥ. This step relies on the functional
form assumptions on f (Xit ) and h(Uit), as well
as a lower rank representation of U.
Step 2. Predict the counterfactual outcome Yit (0)
for each treated observation using f̂ , ĥ(U), that
is, Ŷit (0) = f̂ (Xit ) + ĥ(Uit ), for all (i, t ) ∈ M.
Step 3. Estimate the individualistic treatment ef-
fects δit using δ̂it = Yit − Ŷit (0) for each treated
observation (i, t ) ∈ M.
Step 4. Take averages of δ̂it to produce estimates
for the quantities of interest. For example, for
the ATT, ÂTT = 1

|M|
∑

M δ̂it ; for the ATT at time

period s since the treatment occurred ÂTT s =
1

|S|
∑

(i,t )∈S δ̂it , in which S = {(i, t )|Di,t−s =
0, Di,t−s+1 = Di,t−s+2 = · · · = Dit = 1}. |A| de-
notes the number of elements in set A.

Because treated observations of early treatment
adopters never serve as controls for late treatment
adopters, we prevent the negative weights problem from
its root cause (de Chaisemartin and d’Haultfoeuille 2020;
Goodman-Bacon 2021). Compared with DIDM , our
method is more efficient because it uses most avail-
able data without imposing stronger functional form
assumptions.
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COUNTERFACTUAL ESTIMATORS 165

Three Novel Estimators as Examples

In this subsection, we review three estimators as exam-
ples of this framework. They are conceptually similar be-
cause they follow the same identification strategy laid
out above.

a) The FEct estimator. We start by introducing a coun-
terfactual estimator in which Yit (0) is imputed based on
a TWFE model, that is,

Yit (0) = X′
it β + αi + ξt + εit , for all (i, t ).

In other words, we assume f (Xit ) = X′
it β and

h(Uit ) = αi + ξt . A linear constraint over the FE,∑
Dit =0 αi = ∑

Dit =0 ξt , is imposed to achieve identi-
fication. This constraint also makes the grand mean
parameter redundant.

It is easy to see that in a classic DID setup with
two groups, two periods and no covariates, the FEct es-
timator is the DID estimator. How does FEct address the
weighting issue with a general panel treatment structure?
Arkhangelsky and Imbens (2021) show that with additive
unit and time FE, any estimator that aims at identifying
a convex combination of δit can be written as a weighted
average of Yit , where the weights {wit }1≤i≤N,1≤t≤T

must satisfy the following four conditions: (1)
1

NT

∑N
i=1

∑T
t=1 wit Dit = 1; (2)

∑T
t=1 wit = 0 for

any i; (3)
∑N

t=1 wit = 0 for any t and (4) wit Dit ≥ 0
for any (i, t ). Weights from both a TWFE model and
FEct meet conditions (1)–(3). However, the former vio-
lates the last condition whereas latter does not; in fact,
FEct imposes wit :Dit =1 = 1

|M| , which guarantees the iden-
tification of the causal quantities, such as ATT and ATTs.
We can therefore rewrite FEct as a weighting estimator;
that is, each treated observation is matched with its
predicted counterfactual Ŷit (0) = W(it )′

YO, which is the
weighted sum of all untreated observations. Comparison
within each matched pair removes the biases caused by
improper weighting that plague conventional FE models.
We provide all the proofs in Section B in SI (pp. 12–15).

Proposition 1 (Unbiasedness and consistency of FEct).
Under Assumptions 1–3, as well as some regularity
conditions,

E[ÂTT s] = ATTs;E[ÂTT ] = ATT ;
ÂTT s − ATTs

p→ 0; and ÂTT − ATT
p→ 0 as N → ∞.

Proposition 2 (FEct as a weighting estimator). Under As-
sumptions 1–3 and when there are no covariates, we have

ÂTT s = 1

|S|
∑

(i,t )∈S
[Yit − W(it )′

YO],

where W(it )′ = (. . . ,W (it )
js , . . .)( j,s)∈O is a vector of

weights that satisfy∑
(s:(i,s)∈O)

W (it )
is = 1,

∑
( j:( j,t )∈O)

W (it )
jt = 1,

∑
( j:s �=t ,( j,s)∈O)

W (it )
js =

∑
(s: j �=i,( j,s)∈O)

W (it )
js = 0.

b) The IFEct estimator. FEct estimates will be biased
when unobserved time-varying confounders exist. A
couple of authors have proposed using factor-augmented
models to relax the strict exogeneity assumption
(Bai 2009; Bai and Ng 2021; Gobillon and Magnac 2016;
Xu 2017). IFEct models the response surface of untreated
potential outcomes using a factor-augmented model:

Yit (0) = X′
it β + αi + ξt + λ′

i ft + εit , for all (i, t ).

In other words, f (Xit ) = X′
it β and h(Uit ) = αi + ξt +

λ′
i ft . When the model is correctly specified, IFEct is con-

sistent.

Proposition 3 (Consistency of IFEct). Under Assump-

tions 1–3, as well as some regularity conditions, ÂTT
p→

ATT as N, T → ∞.

c) The matrix completion estimator. Athey et al.
(2021) introduce the MC method from the computer sci-
ence literature as a generalization of factor-augmented
models. Similar to FEct and IFEct, it treats a causal in-
ference problem as a task of completing an (N × T )
matrix with missing entries, where missing occurs when
Dit = 1. Mathematically, MC assumes that the (N × T )
matrix of [h(Uit )]i=1,2,...,N,t=1,2,...,T can be approximated
by a lower rank matrix L(N×T ), that is,

Y(0) = Xβ + L + ε,

in which Y is a (N × T ) matrix of untreated outcomes; X
is a (N × T × k) array of covariates and ε represents an
(N × T ) matrix of idiosyncratic errors. As with IFEct, L
can be expressed as the product of two r-dimension ma-
trices: L = �F. Unlike IFEct, however, the MC estimator
does not explicitly estimate F and �; instead, it seeks to
directly estimate L by solving the following minimization
problem:

L̂ = arg min
L

⎡
⎣ ∑

(i,t )∈O

(Yit − Lit )2

|O| + λL‖L‖
⎤
⎦,

in which O = {(i, t )|Dit = 0}, ‖L‖ is the chosen matrix
norm of L and λL is a tuning parameter. Athey et al.
(2021) propose an iterative algorithm to obtain L̂ and
show that L̂ is an asymptotically unbiased estimator for
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166 LICHENG LIU, YE WANG, AND YIQING XU

L. We summarize the algorithms for both IFEct and MC
in SI (pp. 2–3).

Remark 1 (The difference between IFEct and MC). The
main difference between IFEct and MC lies in the way they
regularize the singular values when decomposing the resid-
ual matrix. IFEct uses a ‘best subset’ approach that selects
the r biggest singular values, in which r is a fixed number
and r < min{N, T }, whereas MC imposes an L1 penalty
on all singular values with a tuning parameter λL (Fig-
ure 2). In the machine learning literature, they are referred
to as hard impute and soft impute, respectively.

Whether IFEct or MC performs better depends on
context. In Section D.2 in SI (pp. 20–21), we provide
Monte Carlo evidence to show that when the factors
are strong and sparse, IFEct outperforms MC; otherwise,
MC performs better. In practice, researchers may choose
between the two models based on how they behave un-
der the diagnostic tests we introduce in the next section.
When r = 0 or when λL is bigger than the biggest singu-
lar value of the residual matrix, no factors are included in
the model; as a result, IFEct or MC reduces to FEct.

The IFEct estimator was first proposed by Gobillon
and Magnac (2016) in a DID setting where the treatment
takes place at the same time for a subset of units. It is
also closely related to the generalized SCM (Xu 2017), in
which factors are estimated using the control group data
only. In this paper, we accommodate with panel treat-
ment structure, which allows treatment reversal. In other
words, the generalized SCM can be seen as a special case
of IFEct when the treatment does not switch back.

Remark 2 (Choosing the tuning parameters). In order to
choose r for IFEct, we repeat Step 2 on a training set of un-
treated observations until β̂ converges. The optimal r is then
chosen based on a prespecified model performance metric,
such as mean squared prediction error, using a k-fold cross-
validation scheme. To preserve temporal correlations in the
data, the test set consists of a number of triplets (three con-

secutive untreated observations of the same unit) from the
treatment group. Similarly, for the MC estimator, we use
k-fold cross-validation to select the λL. The test set is con-
structed in the same way as in IFEct.

Remark 3 (Inferential methods). We rely on nonparamet-
ric block bootstrap and jackknife – both clustered at the
unit level – to obtain uncertainty estimates for the treat-
ment effect estimates. Our simulation results, reported in
SI (pp. 16–17), suggest that both inferential methods work
well with reasonable sample sizes (e.g. T = 20, N = 50).
In practice, we recommend researchers use jackknife when
the number of treated units is small.

Diagnostics

In this section, we introduce a set of diagnostic
tools to assist researchers probing the validity of the
identifying assumptions. These assumptions should be
considered collectively because strict exogeneity (As-
sumption 2) hinges on a correct functional form
(Assumption 1) and bias removal is only possible when
the feasibility condition (Assumption 3) is met. We first
introduce a plot for dynamic treatment effects based on
counterfactual estimators. We then propose several sta-
tistical tests for the implications of the identifying as-
sumptions, including a placebo test, a test for no pretrend
and a test for no carryover effects. The latter two can be
seen as extensions of the placebo test.

A Plot for Dynamic Treatment Effects

In applied research with TSCS data, researchers often
plot the so-called ‘dynamic treatment effects’, which
are coefficients of the interaction terms between the
treatment indicator and a set of dummy variables

FIGURE 2 Hard Impute (IFEct) vs. Soft Impute (MC)

Notes: The figure, adapted from Athey et al. (2021), illustrates how regularization works with
IFEct (interactive fixed effects counterfactual) – which selects two factors in this case – and MC
(matrix completion). It also shows that they are fundamentally similar ideas. |a|+ = max(a, 0).
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COUNTERFACTUAL ESTIMATORS 167

indicating numbers of periods relative to the on-
set of the treatment (lags and leads) – for example,
s = −4, −3, . . . , 0, 1, . . . , 5 with s = 1 representing the
first period a unit receives the treatment – while con-
trolling for unit and time FE. Researchers then gauge the
plausibility of the strict exogeneity assumption by eye-
balling whether the coefficients in the pretreatment peri-
ods (when s ≤ 0) exhibit an upward or a downward trend
– often known as a ‘pretrend’ – or are statistically signif-
icant from zero. The magnitudes of the coefficients and
corresponding p-values often depend on the baseline cat-
egory researchers choose, which varies from case to case.

We improve the dynamic treatment effect plot by
taking advantage of the counterfactual estimators. In-
stead of plotting the interaction terms, we plot the av-
erages of the differences between Yit and Ŷit (0) for units
in the treatment group (Ci = 1), re-indexed based on the
time relative to the onset of the treatment. Specifically,
we define δ̂it = Yit − Ŷit (0), for all t ,Ci = 1. When the
identifying assumptions are correct, it is easy to see that
average pretreatment residuals will converge to zero, that

is, ÂTT s
p→ 0 for all s ≤ 0.1 Therefore, we should expect

pretreatment residual averages to be bouncing around
zero, that is, no strong pretrend. Figure 3 illustrates how
we takes averages of δ̂it based on the timing relative to the
next closest treatment.

This method has two main advantages over the tra-
ditional approach. First, it relaxes the constant treat-
ment effect assumption. Even though the conventional
dynamic treatment effect plot allows the treatment ef-
fects to be different across time, it assumes a constant ef-
fect for all treated units in a given time period (relative to
the start of the next treatment).2 Second, because a unit’s
untreated average has already been subtracted from δ̂it ,
it is no longer necessary for researchers to choose a base
category; to put it differently, the base category is set at
a unit’s untreated average after the time effects are par-
tialed out. The dynamic treatment effects plot is an in-
tuitive ‘eyeball’ test that can help researchers detect data
and model issues instantly. However, it cannot differen-
tiate the specific reasons why the identifying assump-
tion may have failed, such as the anticipation effect, the
presence of time-varying confounders or feedback from
past outcomes.

1With some abuse of the terminology, we call the residual averages
ÂTT s when s ≤ 0.

2Sun and Abraham (2021) show that, under a staggered adoption
design, if the dynamic treatment effects differ across cohorts, a
spurious pretrend may arise even when the parallel trends assump-
tion is valid.

We illustrate the plot using a simulated panel dataset
of 200 units and 35 time periods based on the following
data generating process (DGP) with two latent factors,
f1t and f2t :

Yit = δit Dit + 5 + 1 · Xit ,1 + 3 · Xit ,2

+ λi1 · f1t + λi2 · f2t + αi + ξt + εit ,

where the heterogeneous individualistic treatment effects
are governed by δit = 0.4st + eit when Dit = 1, in which
st represents the number of periods since the latest treat-
ment’s onset and eit is i.i.d. N (0, 0.16); and δit = 0 when
Dit = 0. This means the expected value of the treatment
effect gradually increases as a unit takes up the treat-
ment and there is no carryover effect. f1t is a linear trend
plus white noise and f2t is an i.i.d. N (0, 1) white noise.
For each unit, the treatment may switch on and off. The
probability of getting the treatment is dependent on the
treatment status in the previous period as well as the in-
teractive and additive FE (see p. 18 in SI for details; this
DGP satisfies Assumptions 1–3). As a result, failure to
adjust for these factors will lead to biases in the causal es-
timates.

Figure 4 shows the estimated dynamic treatment ef-
fects with 95% confidence intervals based on block boot-
straps of 1000 times using the aforementioned coun-
terfactual estimators. They are benchmarked against the
true ATTs, which we depict with red dashed lines.

From the left panel of Figure 4, we see that using
the FEct estimator, (1) a strong pretrend leads towards
the onset of the treatment and multiple ‘ATT’ estimates
(residual averages) in the pretreatment periods are sig-
nificantly different from zero; and (2) there are sizeable
positive biases in the ATT estimates in the post-treatment
periods. We see a similar pattern in the post-treatment
periods in the right panel where the MC estimator is
applied, though with smaller biases. However, when us-
ing the IFEct estimator, the ATT estimates in both pre-
treatment and post-treatment periods are very close to
the truth. This is expected because the DGP is generated
by an IFE model with two latent factors and our cross-
validation scheme picks the correct number of factors. To
help researchers gauge the effective sample size, we plot
the number of treated units at a given time period be-
neath the corresponding ATT estimate.

The dynamic treatment effects plot displays the tem-
poral heterogeneity of treatment effects in an intuitive
way. It is also a powerful visual tool for researchers to
evaluate how plausible the identifying assumptions are.
Next, we introduce several statistical procedures that for-
mally test the implications of these assumptions. We start
with a placebo test.
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168 LICHENG LIU, YE WANG, AND YIQING XU

FIGURE 3 Estimating the Dynamic Treatment Effects

Notes: The figure shows the treatment status with two hypothetical examples: (a) staggered adoption and (b) a general panel
treatment structure. Numbers correspond to time relative to the onset of a treatment. Several cells in (b) are not assigned num-
bers because left or right censorship of data makes their relative positions to a treatment uncertain.

A Placebo Test

The basic idea for the placebo test is straightforward: We
assume that the treatment starts S periods earlier than its
actual onset for each unit in the treatment group (Ci = 1)
and apply the same counterfactual estimator to obtain es-
timates of ATTs for s = −(S − 1), . . . , −1, 0. We can also
estimate the overall ATT for the S pretreatment periods.
If Assumptions 1–3 hold, we should expect the magni-
tude of this fake ‘ATT’ estimate is close to zero. If this

‘ATT’ estimate is statistically different from zero, we ob-
tain a piece of evidence that some or all of the identi-
fying assumptions are likely to be invalid.3 For example,
if a feedback effect from past outcome to current treat-
ment exists (e.g. Yt−1 and Dt are positively correlated in

3In practice, S should not be set too large because the larger S is, the
fewer pretreatment periods will remain for estimating the model.
If both S and Nt r are too small, however, the test may be under-
powered. In this and the following examples, we set S = 3.

FIGURE 4 Dynamic Treatment Effect for the Simulated Example

Notes: The above figure shows the dynamic treatment effects estimates from the simulated data using three different estimators: FEct,
IFEct, and MC. The bar plot at the bottom of each panel illustrates the number of treated units at the given time period relative to the
onset of the treatment (the number decreases as time goes by because there are fewer and fewer units that are treated for a sustained
period of time). The red dashed lines indicate the true ATT.
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COUNTERFACTUAL ESTIMATORS 169

Figure 1), which is a failure of the strict exogeneity
assumption, it is likely to be detected by the placebo test
given sufficient data.

Because a placebo test is a test for equivalence, as
Hartman and Hildago (2018) point out, a simple DIM
approach may suffer from limited power; that is, when
the number of observations is small, failing to reject the
null of the zero placebo effect does not mean equivalence
holds. To address this concern, we introduce a variant
of the equivalence test, where the null hypothesis is re-
versed:

ATT p < −θ2 or ATT p > θ1,

in which −θ2 < 0 < θ1 are prespecified parameters, or
equivalence thresholds. Rejection of the null hypothesis
implies the opposite holds with a high probability, that
is, −θ2 ≤ ATT p ≤ θ1. In other words, if we collect suf-
ficient data and show that the fake ‘ATT’ falls within a
prespecified narrow range, we obtain a piece of evidence
to support the validity of the identifying assumptions.
[−θ2, θ1] is therefore called the equivalence range. We use
the two one-sided tests (TOST) to check the equivalence
of ATT p to zero. Following Hartman and Hildago (2018),
we set θ1 = θ2 = 0.36σ̂ε, in which σ̂ε is the standard de-
viation of the residualized untreated outcome4; alterna-
tively, researchers may set the equivalence range based on
an effect size they deem reasonable.

One advantage of the placebo test is that it is ro-
bust to model misspecification and immune from over-
fitting because it relies on out-of-sample predictions of
Yit (0) in the placebo periods. Figure 5 shows the results
from the placebo tests based on the three counterfac-
tual estimators. We see that for FEct and MC, we can
reject the null that the placebo effect is zero under the
DIM test but cannot reject the null that the effect is out-
side the equivalence range – hence, equivalence does not
hold – whereas IFEct behaves in the exact opposite way:
The placebo effect is statistically indistinguishable from
zero (p = 0.534), and we can reject the null hypothe-
sis that the placebo effect is bigger than the true ATT
(p = 0.000). Although the MC method fits the pretreat-
ment periods well, it does not pass the placebo test using
either the DIM approach (p = 0.000) or the equivalence
approach (p = 0.131).

The main shortcoming of the equivalence approach
is that researchers need to prespecify the equivalence
range. [0.36σ̂ε, 0.36σ̂ε] may be too lenient when the ef-
fect size is small relative to the variance of the resid-
ualized outcome. An alternative the literature suggests

4Specifically, we run a TWFE model with time-varying covariates
using untreated data only and calculate the standard deviation of
the residuals. The literature maps it at a moderate effect size.

is to benchmark the minimum range against a reason-
able guess of the effect size based on previous studies
(e.g. Wiens 2001). However, such information is often
unavailable. Because the ATT estimates from a TSCS
analysis can be severely biased due to failures of the iden-
tification assumptions, unlike in experimental settings,
they cannot provide valuable information for the true ef-
fect size, either. Moreover, setting the equivalence range
in a post hoc fashion can lead to problematic results
(Campbell and Gustafson 2018). The best practice would
be for researchers to preregister a plausible effect size and
use it to set the equivalence range before analysing data,
as is a common practice in clinical trials.

Two Extensions

We now extend the placebo test to testing (1) whether a
pretrend exists, especially when it takes place a few pe-
riods before the treatment starts and cannot be detected
by the placebo test; and (2) whether the treatment has
carryover effects.

A test for no pretrend. When a potential time-varying
confounder is cyclical or does not present itself right be-
fore the treatment’s onset, the placebo test may not be
able to pick it up. Under this circumstance, we need a
more global test for no pretrend. A natural approach is
to jointly test a set of null hypotheses that the average
of residuals for any pretreatment period is zero, that is,
ATTs = 0 for all s ≤ 0 using an F test (see SI Section A.3,
pp. 4–5, for details). However, because the test for no pre-
trend is also a test for equivalence, we develop an equiva-
lence test with the following null:

ATTs < −θ2 or ATTs > θ1, ∀s ≤ 0,

in which [−θ2, θ1] is the equivalence range. In other
words, the null is considered rejected (hence, equivalence
holds) only when the tests for all pretreatment periods
generate significant results. This is clearly a conservative
standard, as we are simultaneously testing multiple hy-
potheses; as a result, the Type I error will be smaller than
the test size (e.g. 0.05).5 The equivalence approach has
an additional advantage over the F test in that when the
sample size is large, a small confounder (or a few outliers)
that only contributes to a neglectable amount of bias in
the causal estimates will almost always cause rejection of

5Because the goal of an equivalence test is to control the Type I
error, multiple testing, which makes the test more conservative,
is not a major concern. See Hartman (2021) (footnote 11) for a
discussion.
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170 LICHENG LIU, YE WANG, AND YIQING XU

FIGURE 5 Placebo Tests for the Simulated Example

Notes: The figure shows the results of the placebo tests based on three different estimators: FEct, IFEct, and MC. The bar plot at the
bottom of each panel illustrates the number of treated units at the given time period relative to the onset of the treatment. The red
dashed lines indicate the true ATT. Three pretreatment periods (s = −2, −1, 0) serving as the placebo are rendered in blue. The p-
values for the t test of the placebo effect and for the TOST are shown at the top-left corner of each panel. The equivalence range is set
as [−0.36σ̂ε, 0.36σ̂ε].

the null hypothesis of joint zero means using the F test.
The equivalence test avoids this problem.

Building upon the basic idea of the placebo test, we
use a leave-one-period-out approach to obtain an aver-
age out-of-sample prediction error for each period before
the treatment’s onset as long as data permits. Given a pre-
specified equivalence range, each of the TOST rejects the
null of inequivalence when the bootstrapped one-sided
confidence interval of pretreatment ATTs (average pre-
diction error in period s) falls within the range. In addi-
tion, we also calculate the minimum range, the smallest
symmetric bound within which we can reject the null of
inequivalence using our sample. In other words, the min-
imal range is determined by the largest absolute value of
the range of the 90% confidence intervals of ÂTT s,s≤0 in
the pretreatment periods if we control the size α = 0.05
(Hartman 2021). A rule of thumb is that when the min-
imum range is within the equivalence range, the test is
considered passed. In Section D.3 in SI (pp. 21–22), we
compare the performance of the F test and the equiva-
lence test using simulations.

Figure 6 demonstrates the results of the equivalence
test based on FEct, IFEct and MC using the simulated
dataset. With FEct, the trend leading towards the onset
of the treatment goes beyond the equivalence range and
results in a wide minimum range. Therefore, we cannot
reject the null that the pretreatment average prediction
errors are beyond a narrow range – in other words, we
cannot say that equivalence holds with high confidence.
However, both IFEct and MC pass the test. The 90% con-
fidence intervals of the pretreatment prediction error av-
erages are within the equivalence range and the mini-

mum range is narrower than the equivalence range. Note
that the F test p-value for MC is .000, which points to
potential model misspecification.

A test for no carryover effects. We extend the idea
of the placebo test to testing the presence of carryover
effects. Instead of hiding a few periods right before the
treatment starts, we hide a few periods right after the
treatment ends and predict Yit (0) in those periods. If car-
ryover effects do not exist, we would expect the average
prediction error in those periods to be close to zero. Once
again, we use both the DIM approach and the equiva-
lence approach. Figure 7 shows the results from applying
this test to the simulated sample. Different from the dy-
namic treatment effects plot, the x-axis is now realigned
based on the timing of the treatment’s exit, not onset,
for example, 1 represents one period after the treatment
ends. The results show that the carryover effect does not
seem to exist no matter which estimator or test is used,
which is consistent with the DGP.

It is worth noting that the failure of the no carry-
over effects assumption does not necessarily invalidate
our counterfactual estimation approach. If, by employ-
ing the proposed test, researchers find that the treatment
effect persists after the treatment ends but in a limited
time window, one strategy to proceed is to leave a suf-
ficient number of periods after the end of the treatment
as ‘treated’ and estimate the effects over these periods
(as we do in the proposed test). Alternatively, researchers
can change the definition of the treatment to ‘Dit = 1
if a unit has ever been under the treatment conditions,
and Dit = 0 if otherwise’, which essentially converts
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COUNTERFACTUAL ESTIMATORS 171

FIGURE 6 Tests for No Pretrend: The Simulated Example

Notes: The above figure shows the results of the equivalence tests based on three different estimators: FEct, IFEct, and MC. Pretreatment
average prediction errors and their 90% confidence intervals are drawn. The red dashed lines mark the equivalence range, whereas the
grey dashed lines mark the minimum range. The bar plot at the bottom of each panel illustrates the number of treated units at the given
time period relative to the onset of the treatment.

treatment assignment to a staggered adoption process,
thus making the assumption for the no carryover effects
unnecessary.

We summarize the diagnostic tests in Table 1. To
lend support to the identifying assumptions, researchers
can use either the DIM approach, if power is not a big
concern, or the equivalence approach, if they have prior
knowledge about the approximate effect size. No matter
which approach researchers choose to use, visual inspec-
tion is always the first line of defense against erroneous
causal claims based on invalid identifying assumptions.

Empirical Examples

We now apply the counterfactual estimators, as well as
the diagnostics tools, to two empirical examples in po-
litical economy. The first example has a staggered adop-
tion treatment structure whereas in the second one, the
treatment switches back and forth. We start with FEct.
If the results from FEct pass both the ‘eyeball’ test and
the diagnostic tests, there is little need for more complex
methods except for potential efficiency gains. If, however,
the visual inspection or the tests suggest the identifying

FIGURE 7 Tests for No Carryover Effects Using the Simulated Example

Notes: The figure shows the results of the tests for no carryover effects based on three different estimators: FEct, IFEct, and MC. The
bar plot at the bottom of each panel illustrates the number of treated units at the given time period relative to the end of the treatment.
Three periods after the treatment ends are rendered in pink. The p-values for the t test of the carryover effects and for the TOST are
shown at the top-right corner of each panel.
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172 LICHENG LIU, YE WANG, AND YIQING XU

assumptions are unlikely to be true, we apply IFEct and
MC and run diagnostics again. In both applications, we
set S = 3 in the placebo tests. All uncertainty estimates
are obtained using block bootstrap clustered at the unit
level 1000 times.

Direct democracy and naturalization rates. Hain-
mueller and Hangartner (2019) study whether switching
from direct democracy to indirect democracy increases
naturalization rates for minority immigrants in Swiss
municipalities using a staggered DID design. The out-
come variable is minorities’ naturalization rate in munic-
ipality i during year t . The treatment is a dummy variable
indicating whether naturalization decisions are made by
popular referendums. The dataset consists of 1211 Swiss
municipalities over 19 years, from 1991 to 2009. The
authors report that the naturalization rate increases by
1.339 percentage points on average (with a standard error
of 0.161) after a municipality shifts the decision-making
power from popular referendums to elected officials us-
ing a TWFE model.

We then apply FEct and obtain an estimate of 1.767
(with a standard error of 0.197), even larger than the
original estimate. Plots for the dynamic treatment ef-
fects and placebo test are shown in Figure 8. We find
that, first, the residual averages in the pretreatment pe-
riods are almost flat and around zero and the effect grad-
ually takes off after the treatment begins. Second, with
the placebo test, we cannot reject the null of zero placebo
effect (p = .422), whereas we can reject the null whose
magnitude is bigger than the default equivalence thresh-
old (p = .000). Third, the F test does not reject the null
of no pretrend at the 5% level (p = .182) while the TOST
reject the null of inequivalence (p = .001). The test for
carryover effects is not applicable because of the stag-
gered adoption treatment structure. We also apply both
IFEct and MC estimators to this example. It turns out

that the cross-validation schemes find zero factors, in the
case of IFEct, and a tuning parameter bigger than the first
singular value of the residual matrix, in the case of MC,
both of which imply maximum regularization (no fac-
tors). Hence, both methods reduce to FEct and give the
exact same estimates as FEct.

In short, results from FEct are substantively the same
as those from conventional TWFE models. However,
counterfactual estimators like FEct allow us to check the
validity of the identifying assumptions in a more conve-
nient and transparent way.

Partisan alignment and grant allocation. Our second
example is based on Fouirnaies and Mutlu-Eren (2015),
in which the authors investigate whether partisan align-
ment between local councils in England and the central
government bring localities more grants. The outcome
of interest is the logarithm of specific grants per capita
allocated to a local council. The treatment is a dummy
variable indicating whether the government party con-
trols the majority of local councils. The dataset spans
466 local councils from 1992 to 2012. The authors add
locality-specific linear time-trends to a TWFE specifica-
tion and find that partisan alignment increases specific
grants allocated to a council – the increase peaks three
years after alignment (see p. 24 in SI for the original fig-
ure). A TWFE model without the locality-specific trends,
however, returns negative estimates for the effect of par-
tisan alignment.

We apply the three estimators to the data and plot
the estimated dynamic treatment effects in Figure 9a. It
shows that, with FEct, the pretreatment residual aver-
ages consistently deviate from zero, suggesting potential
violations of the identifying assumptions. With IFEct
and MC, however, these averages are very close to zero.
Figure 9b shows the results from the placebo test. With
FEct, we cannot reject the null hypothesis of a non-zero

TABLE 1 Diagnostic Tests Summary

Placebo Test Testing (No) Pretrend Testing (No) Carryover Effects

t test TOST F test TOST t test TOST

Null ATT p = 0 |ATT p| > θ ATTs = 0, ∀s ≤ 0 |ATTs | > θ, ∃s ≤ 0 ACOE = 0 |ACOE | > θ

If rejecting the null Invalidate
assumptions

Support
assumptions

Invalidate
assumptions

Support
assumptions

Invalidate no
carryover

Support no
carryover

Equivalence
threshold θ

0.36σ̂ε or eff 0.36σ̂ε or eff 0.36σ̂ε or eff

Notes: Both the t and F tests are conventional difference-in-means tests, testing against the null of no difference. ‘Assumptions’ refers to
Assumptions 1–3 as a whole. σ̂ε is the standard deviation of the residuals after two-way fixed effects are partialled out using untreated
data only. ATT p denotes the average placebo treatment effect on the treated. ACOE denotes the average carryover effect. ‘eff’ represents an
effect size that researchers deem reasonable.
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COUNTERFACTUAL ESTIMATORS 173

FIGURE 8 The Effect of Indirect Democracy on Naturalization

Notes: The figure shows the results from applying FEct to data from Hainmueller and Hangartner (2019). The left panel shows the
estimated dynamic treatment effects using FEct. The middle panel shows the results from a placebo test using the ‘treatment’ in three
pretreatment periods as a placebo. The right panel shows the results of an equivalence test for no pretrend, in which the red and grey
dashed lines mark the equivalence range and the minimum range, respectively. The bar plot at the bottom of each panel illustrates the
number of treated units at a given time period relative to the onset of the treatment.

placebo effect at the 5% level. With either IFEct or MC,
both the DIM (t test) and the equivalence tests suggest
the placebo effect is close to zero; however, IFEct seem
to approximate the data better than MC as the pretrend
looks almost completely flat and the estimated treatment
effects are close to those in Figure 9a.6 Finally, we report
the results from the test for carryover effects in Figure 9c,
in which we test the carryover effects up to five years
after partisan alignment ends. Based on the result from
IFEct, the test suggests that there are positive carryover
effects at least three years after partisan alignment ends.
As discussed earlier, violation of the no carryover effects
assumption does not necessarily invalidate the research
design, but suggests that a more flexible estimation
strategy is required. After we remove observations in the
three periods after the treatment ended in the model-
building stage (Step 1 in the algorithm), we re-estimate
the ATT and conduct the diagnostic tests again. The new
results shown in Figure A15 in SI (p. 26) suggest that
IFEct passes all diagnostic tests and is the most suitable
model among the three. The magnitude of the effect
remains similar.

6The results from the equivalence tests are not greatly informative
and are reported in Figure A14 in in SI (p. 25).

Conclusion

The commonly used TWFE models require strong as-
sumptions to produce interpretable causal estimates;
however, they remain highly valuable because of their
versatility in accommodating different data structures
and high computational efficiency. In this paper, we seek
to improve current practices with TWFE models by pro-
viding a simple but powerful counterfactual estimation
framework, the key to which can be described as ‘fit data
in the controls and impute counterfactuals to the treated’,
and by offering easy-to-implement diagnostic tests to as-
sist researchers in probing the validity of the identify-
ing assumptions.

We discuss three estimators under this framework,
including FEct, IFEct and MC. It is important to note
that IFEct and MC are not this paper’s invention;
they already exist in the literature. However, putting
them in the same framework allows us to conduct di-
agnostics and evaluate their respective assumptions.
Table 2 compares these estimators and other existing
approaches and shows that they have several important
advantages: They address the negative weights problem
under heterogeneous treatment effects, accommodate
general panel treatment structure without discarding
data, can flexibly incorporate time-varying covariates
and are amenable for diagnostic tests. In addition, IFEct
and MC can account for decomposable time-varying
confounders.
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174 LICHENG LIU, YE WANG, AND YIQING XU

FIGURE 9 The Effect of Partisan Alignment on Grant Allocation

Notes: The blue dots in (b) represent the periods used in the placebo tests. The red dots in (c) represent the periods used in the tests for
no carryover effects. The authors’ original results based on a TWFE model with council-specific linear time trends are similar to the
IFEct results.
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TABLE 2 Comparison of Methods

DID wDID DIDM PM TWFE FEct IFEct/MC

Accommodate heterogeneous treatment effects x x x x x x
Allow treatment reversal x x x x x
Condition on time-invariant covariates x x
Condition on time-varying covariates x x x x
Use most available data x x x x x
Easy-to-implement diagnostic tests x x x x x
Condition on Uit = λ′

i ft x

Notes: DID, wDID, DIDM , PM, TWFE, FEct, and IFEct/MC represent difference-in-differences, weighted difference-in-differences (Strezh-
nev 2018; Sun and Abraham 2021; Callaway and Sant’Anna 2021), multiple difference-in-differences (de Chaisemartin and d’Haultfoeuille
2020), panel match (Imai, Kim and Wang 2021), two-way fixed effects, fixed effects counterfactual, and interactive fixed effects counter-
factural/matrix completion, respectively. Uit = λ′

i ft represents decomposable time-varying confounders.

We also improve the existing practice of estimating
and plotting dynamic treatment effects and develop sev-
eral statistical tests based on the new plot. These tests are
based on out-of-sample predictions of untreated poten-
tial outcomes, and thus are immune to model misspecifi-
cation or overfitting. We recommend researchers use the
visual and statistical tests in a holistic manner to gauge
the validity of the identifying assumptions, as we do with
two empirical examples. Below we provide a checklist as
a practical guide to analysing TSCS data using counter-
factual estimators:

• Plot the treatment status of your data and ask
whether strict exogeneity assumption is a plausi-
ble description of the treatment assignment pro-
cess; if not, consider using methods based on se-
quential ignorability.

• Plot the outcome variable in a time-series fashion
to spot outliers and irregularities; transform the
data if necessary.

• Start with the simplest estimator, FEct, draw the
dynamic treatment effects plot and perform both
visual inspection and diagnostic tests (using ei-
ther the DIM approach or the equivalence ap-
proach).

• If FEct does not pass the placebo test or the test
for no pretrend, apply more complex models,
such as IFEct and MC, and perform diagnostics
again.

• If the chosen method fails the test for no car-
ryover effects, remove several periods after the
treatment ends from the model-building stage,
then re-apply the method and conduct diagnos-
tics again.

• Optionally, if a treatment effect is detected, per-
form subgroup analysis to understand which
group(s) of units are driving the effect.

• Communicate your findings effectively, ideally
with figures.

We provide two packages, panelView and fect, in
both R and Stata to assist researchers in achieving these
goals. We hope that this guide, as well as the tools we
provide, will contribute to improved practices when re-
searchers analyse TSCS data.
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